

Lunar operations testing in analogue facilities: the ESA-DLR LUNA facility

A. E. M. Casini, P. Mittler, J. Schlutz, T. Uhlig, B. Fischer

SpaceOps 2022 Workshop, NASA AMES

02/06/2022

Outline

Topics

- Introduction
- Why LUNA?
- LUNA features
- Project schedule
- Conclusions

Introduction

International context

Renaissance of lunar exploration: robotic missions (USA, China, Japan, Russia, India, Korea, etc.) as well as human spaceflights (US Artemis, China/Russia ILRS).

Great interest in LUNA as

- Training/validation facility (closing gap between lab tests and outdoor field tests)
- Potential competence centre for human-robotic operations
- Synergies with European ESA and member states' facilities and industrial partnerships, e.g. ESRIC (LU), ECSAT (UK), COMEX (FR), Air Liquide (FR/DE)

European ambition

- Train all future Moon astronauts in Cologne
- Provide full mission simulation on ground
- Enable robotic system validation and ops
- European astronaut on the Moon bef. 2030

Why LUNA?

Closing gaps (field vs lab)

LUNA will be a unique worldwide facility that addresses the testing and simulation needs of the forthcoming lunar exploration missions

Competence Centre Aerospace Medicine

Institute for Aerospace Medicine

:envihab

MUSC

@esa DLR **LUNA**

LUNA

European Astronaut Centre

Reduced gravity

Solar illumination simulation

Dust laboratory

Gas laboratory

Terrain modeling

Positioning / motion capture

Human-robotic interaction

Regenerative power systems

Local comms networks

Innovative construction

Virtual reality (VR/AR/XR)

Outreach & education

Gravity offload system

Goal

Simulation of lunar gravity for astronaut teams (motion, work context, etc.) and for testing of robotic systems (rover, etc.)

Implementation

Unique robotic system to partially offload Earth's gravitational force (Moon = 1/6 g) within the LUNA hall (ceiling or wall mounted)

Dedicated development or combination of robotics, constant force mechanism(s), stage installations, exoskeleton

Utilisation / Unique Selling Point

Unique system, not available on Earth in this performance and scale Testing of space suits, procedures, equipment, tools, operations concepts and training under realistic conditions

Regolith testbed area

Goal

Simulation of lunar terrain for EVA and robotic system training and testing

Implementation

700 m² of lunar terrain replica with a deep floor area and tilting platform, including realistic illuminations (Moon polar and equatorial regions)

Utilisation / Unique Selling Point

Testing of lunar operations for astronauts and rovers in a closed and controlled environment, including ground segment and ground control infrastructures and XR technologies, also leveraging from the Multi-purpose Astronaut Rover Interaction (MARVIN) project

LUNA Energy

LUNA will have a demonstrator of a hybrid solar-hydrogen stand alone power system aimed at understating how such system can be operated on the Moon

AES: Additional Energy systems EMS: Energy Management System

FC: Fuel Cell

EL: Electrolyzer

Components and partners:

- PV panels, batteries and inverters (SOLARWATT);
- Fuel cell, container, H₂ storage (Air Liquide);
- Electrolyzer (DLR Stuttgart);
- Energy Management System (RheinEnergie);
- Grid connection is foreseen for simulation and maintenance purposes
- Additional energy systems can be installed for testing
- Gas processing and handling in connection with ISRU experiments

Project schedule

Timeline of the project:

- LUNA has been fully conceptualised (2017-2021)
- Initial funding for construction confirmed by both partners ESA and DLR
 - Indications of other partner contributions available
 - Construction by ESA, planned to start in fall 2022
- Since 2019 discussions with NRW on funding support for technical outfitting and operations of 5 years
- Readiness for operations expected in summer 2023

03/2022 Building permit application submitted

U4/ZUZZ utfitting projec star

ESA Construction ITT

Q4/2022 Construction start

Q1-Q2/2023 Hall building ready

Q3/2023 First LUNA operations

LUNA is collaborative ESA-DLR project aimed at establishing a European moon analogue facility for preparing lunar exploration with international partners, embedded in the Cologne campus

- Technology and innovation for space and terrestrial applications (e.g. robotics, AI, resources, energy, XR, etc.)
- Training and operational procedures in collaboration with regional and international partners
- Scientific research and knowledge transfer for industry, startups, research institutions, education and outreach
- Low-barrier entry for liverse users and international relevance (incl. NASA Artemis programme)

THANK YOU AND SEE YOU SOON AT ESA-DLR LUNA FACILITY IN COLOGNE!

More questions?
Want to get in touch?
Email to:
andrea.casini@dlr.de

#MoonOnEarth

Back up slides

International context

Contacts with NASA:

- Agreement to be signed shortly for Gateway, surface operations group and human lander group for exchanging XR assets and hours of utilization of LUNA
- Main discussion had with JSC (EVA group, Eddy Paddock), KSC (Swampworks, Robert Mueller) and JPL (Brent Sherwood)
- Following LEAG guidelines
 (analog-objectives-report-02142022.pdf (usra.edu))

Other contacts:

- External industrial partners have expressed their interested for utilizing LUNA (e.g. Air Liquide, Space Applications Services, TAS, etc.)
- Complementary testing capabilities of other EU centres (ESRIC, etc.)
- Potential playground for challenges and hackathon

Back up slides

Example of LUNA utilization: NASA Artemis

- 1. EVA simulation and training
- 2. Phase 1 full mission simulation (6.5 days)
- 3. Phase 2 surface infrastructure deployment, handling, maintenance, etc. simulation and training

Back up slides

